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The summability of the l/N expansion in a simplified 
O ( N )  model 

R J Cant? and R J Rivers 
Theoretical Physics Department, Blackett Laboratory, Imperial College of Science and 
Technology, London SW7 2BZ, UK 

Received 23 May 1979 

Abstract. We discuss the 1 / N  expansion of an O(N) quartic single-mode model. The 
imposition of boundary conditions by the 1 / N  expansion is explicitly displayed, using the 
exact solutions. 

In particular, it is shown that in the negative mass’ case the 1 / N  expansion is Bore1 
summable whereas the A(and h) expansions are not. The applicability of these results to 
more realistic models (i.e. as the first term of a strong coupling approximation scheme) is 
discussed. 

1. Introduction 

In the past few years there has been considerable interest in approximation schemes for 
computing Green functions of local field theories that are different to the Feynman 
diagram perturbation series in the coupling constant A of the theory. The motivation 
for these schemes has been the realisation that the A -perturbation series can correspond 
to expansion about the wrong vacuum. In particular, a possibility discussed by many 
authors has been the dynamical breaking of the symmetry of a local field theory by 
purely quantum-mechanical effects, a circumstance which (in general) is not amenable 
to finite-order perturbation theory calculations in A. 

For the majority of cases discussed in the literature, the approximations adopted for 
examining the possibility of solutions different from A -perturbation solutions are based 
on the Schwinger-Dyson branching equations for the connected Green functions 
(appropriately approximated). One of the solutions to these equations will be expected 
to be close to the A-perturbation series. The situation becomes interesting if, in 
addition to this solution, other solutions exist of an entirely different type, which we will 
call the non-A -perturbathe solutions. 

Merely to have a (necessarily non-linear) approximation $ (Nambu and Jona- 
Lasinio 1961, Jackiw and Johnson 1973, Cornwall and Norton 1973, Englert et a1 
1974, 1975, Caianiello and Marinaro 1971, Caianiello et a1 1971) that gives non-A- 
perturbative Green functions is insufficient. It is necessary to imbed this approximation 

t Supported by the Science Research Council. 
i: A typical approximation would be a Hartree-Fock type approximation. Nambu and Jona-Lasinio (1961), 
Jackiw and Johnson (1973), Cornwall and Norton (1973), Englert el a1 (1974, 1975) and Caianiello and 
Marinaro (197 1) give some typical solutions to this approximation displaying non-A -perturbative solutions. 
We note that the existence of more than one solution is not necessarily connected to dynamical symmetry 
breaking, although if there is no change in symmetry the physical conclusions will be less remarkable. 

0305-4470/80/051623 +20$01.50 1980 The Institute of Physics 1623 
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in an approximation scheme which, if soluble, it is hoped will give more and more 
accurate representations of (all solutions for) the connected Green functions. 

The simplest such approximation schemes correspond to expansion of the Green 
function branching equations in some parameter, E say, that is different from A. This 
parameter may be just an artifact of the approximation scheme, a book-keeping device 
to be set unity at the end of the calculation (Wong and Guralnik 1971, Snyderman 
1977). Alternatively it might be another parameter of the theory. A typical example is 
the E=N- '  expansion of some O ( N )  (Schnitzer 1974a,b, Coleman et a1 1975, 
Kobayashi and Kugo 1975, Abbott et a1 1976, Rivers 1976) or U(N) invariant theory. 

In practice, for realistic theories, successive approximations get more and more 
difficult and (just as in A -perturbation expansions) only the first few steps are technically 
practicable (Caianiello et a1 1971, Root 1974). Thus the important problem of the 
possibility of reconstructing the Green functions uniquely from the E expansions is 
often ignored. Of course, if the E expansions do not permit reconstruction of unique 
Green functions the approximation scheme is worthless. 

It is to this problem that we address ourselves. One approach that could be adopted 
would be first to evaluate the large-order terms of any €-expanded Green function and 
determine whether all expansions (assumed asymptotic series in E )  were Borel 
summable. This is the standard approach to the A-perturbation series for Green 
functions (BrCzin et a1 1977, Itzykson et a1 1977a,b, Parisi 1977), whose unique 
summability is also of importance. Borel summability is a useful guide, since the failure 
of Borel summability certainly implies non-unique reconstruction of Green functions, 
although the converse is not true. Neglecting problems with infinite renormalisation 
much work has been done on the A -perturbation series for Euclidean field theories and 
it might be thought that the tactics applied there could be usefully transferred to the 
problem in hand. Certainly we shall be unable to accommodate infinite renormalisation 
and we shall only consider Euclidean field theories that have been fully regularised. 

As a first step, however, we see that a very different approach will give us 
information on the summability of E expansions for Green functions for the limited class 
of approximation schemes in which the explicit theoretical input is only the Schwinger- 
Dyson equations (as it would be for purely scalar theories). We restrict ourselves to this 
class of schemes. 

Consider the following facts. 
(i) The E expansions are determined (for these schemes) by iterative approximation 

to the non-linear Schwinger-Dyson branching equations (well defined for a regularised 
theory) for the connected Green functions. The exact equations are, of course, 
equivalent to the linear Schwinger-Dyson equations for the non-connected Green 
functions. In the absence of further constraints (and we have restricted ourselves to 
situations where there are none) the solutions to these latter equations are not unique, 
depending continuously upon arbitrary functionals, specifying the boundary condi- 
tions. 

(ii) On the other hand, in solving for the E expansion by iteratively modifying the 
non-linear equations, at each step we have a discrete number (up to global symmetry 
invariance) of exact solutions. 

Superficially we seem to have a paradox, but it is not difficult to guess how the 
problem of matching continuous infinities of solutions to a discrete number of solutions 
is resolved. Firstly, it is not surprising if solving linear equations in a non-linear way 
corresponds to imposing weak boundary conditions upon them, although it is difficult to 
state a priori what these conditions will be. Of course, if these implicit boundary 
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conditions were complete there would be no problem. However, in the likely event of 
them being incomplete the residual ambiguity can be accommodated by one or more of 
the E expansions not being uniquely summable to a particular solution of the 
Schwinger-Dyson equations. 

In the next few sections of this paper we shall show how these ideas are effected in a 
concrete (albeit non-realistic) example of an Q ( N )  invariant A44 theory in a single- 
mode approximation (or equivalently, in zero dimensions), taking E = N-’ as the 
expansion parameter. This model, which essentially counts all Feynman diagrams with 
equal weight, possesses a non-A -perturbathe solution to the Schwinger-Dyson 
branching equations for the connected Green functions. Because it is so simple as to be 
exactly soluble it is possible to examine the problems of summability and to display 
explicitly the boundary conditions which the approximation scheme imposes. 

So far we have only considered the Schwinger-Dyson equations in determining the 
uniqueness of summability of the E expansion. This is not adequate, since many 
solutions to these equations will be ‘unphysical’. Imposing ‘physicality’ constraints (e.g. 
no ‘tachyons’) will restrict us to a subset of the general solutions, and it is ultimately in 
this subset that uniqueness has to be considered. Again, in this model it is easy to 
demonstrate this. 

The plan of the paper is as follows. Since we expect the E = N-’ expansions due to 
the iterative truncation of the Schwinger-Dyson equation to be less general than the 
N-’ expansion of the exact solution we display them in the next section. In 9 3 we 
construct the exact solution and compare their N-’ expansions to those already 
obtained. The boundary conditions which the approximation scheme imposes are 
found to be implied by the renormalisation group equations. In 3 5 we consider 
‘physical’ constraints upon the exact solutions, and in $0 4 and 6 we examine the A and 
N -’ summability and relate them. 

Finally, we briefly examine the extent to which this simple model is relevant to more 
realistic situations, in particular, to ‘strong coupling’ expansions for Q ( N )  lattice 
theories. 

2. ‘ n e  Q ( N )  model in the single-mode approximation and its N-’ expansion 

‘The theory that our toy model is motivated by is that described by the Lagrangian 
density 

(2.1) 

where the qa ( a  = 1,2,  . . . , N )  provide an N-dimensional scalar field representation of 
O ( N ) .  When mi  is negative the O(N) symmetry is, of course, spontaneously broken 
classially. Wntil stated otherwise, we shall assume that mi  is positive. 

Wntil the last section we shall be examining the expansion of the Green functions of 
the single-mode approximation to the Euclidean theory of equation (1.1). Combina- 
torially we can interpret the single-mode approximation as ( a )  the zero-dimensional 
theory based on equation (2.1), ( b )  the non-local approximation in which the 4a fields 
propagate in a box independentiy of space-time, or (c) the static ultra-local approxi- 
mation 011 a grid (CaianieHo et a/ 1965, Caianiello and Scarpetta 1974). This latter 
interpretation permits our discussion to be relevant to strong-coupling expansions for 
O(M) invariant lattice theories. We defer this to the last section. 



1626 R J Cant and R J Rivers 

In order to generate the N-' expansions for the connected Green functions (the 
quantities of 'physical' interest) we need the non-linear equations relating them. These 
are derived from the linear equations for the non-connected Green functions, which in 
turn are derived from the linear Schwinger-Dyson equation for the generating function 
Zo[qa], where the qa (of which the space-time structure is irrelevant in the single-mode 
approximation) are the sources coupled to the 'fields' c$~. 

This equation is the third-order linear equation 

As a consequence of the O ( N )  symmetry of the model Z is only a function of 
Q2 = 4:. Equation (2.2) now takes the form 

2 azo  
d Q  

mo-= QZ (2.3) 

Expanding Z in terms of the non-connected Green functions T,, of the model as 

(2.4) 

with normalisation T~ = 1 we see that, for N # 1, = 0, whence there is no solution 
which breaks the O ( N )  symmetry. 

Before examining the general solution of equation (2.3) we shall develop the 1 / N  
expansion of the connected Green functions, to show how the 1 / N  expansion gives a 
discrete number of approximate solutions to a linear differential equation with as yet 
arbitrary boundary conditions. 

If 

W d Q )  =In ZO(Q) (2.5) 
is the generating function for the connected Green functions r,, equation (2.3) 
becomes, in terms of W, the highly non-linear equation 

3 2dWO Q-h( a3wo+3%dwo+ (=) dWo +-[-+ N - 1  d2Wo (%) aw,, ---I). 1 aWo 
dQ N aQ3 dQ aQ Q d Q 2  Q aQ 

(2.6) 
The I?, are then given by 

(2.7) 

For N # 1 all r2p+l ( p  integer) are zero, and the r2,, satisfy the expected non-linear 
relations, of which the first 

is exemplary. To avoid confusion in generating N-' expansions for r2, r4, . . . , etc, we 
will make the implicit N dependence of equation (2.6) explicit by setting 

WO= NU 
and 

Q = moJZq. (2.9) 
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Introducing the dimensionless parameter A = & , m i 4  equation (2.6) now becomes 

Taking q to be O(1) it follows that o ( q )  and its derivatives are all O ( l ) i .  An expansion 
for w in terms of N as 

w(q)N = c " P ' ( q ) / N P  (2.11) 
P 

can then be made, and solved iteratively order by order. 

two solutions for w(q).+,. 
It is straightforward to show that the non-linear equation (1.10) for w ( q )  gives just 

First, in leading order 

(2.12) 

This equation gives rise to two solutions for U(")  vanishing at q = 0, which we denote 

The next to leading term U ( ' )  is fixed uniquely as a function of w(O' by the equation 
( O F  

(2.13) 

with solutions U ( ' ) * .  The pattern continues, with two possible solutions for higher 
corrections w ( ~ ) * ,  giving two asymptotic series 

(2.14) 

If we wish, from w g  we can now construct two functions W, W$(Q2)  and hence 
Zg(Q2).  From Z': we can, in turn, construct the two N - '  expansions (T:~).+, for the 
non-connected Green functions. It is these Green functions that are simplest to 
compare to the exact solutions of the next section. 

We conclude this section with several disparate comments on the N-' expansion. 
Firstly, we note that, to leading order, the equation for r2 is 

r$O) = A(0)- AoA(o)r$o)r$o) (2.15) 

where A(')= m i 2  is the free two-point function of the model. Equation (2.15) has the 
diagrammatic interpretation of figure 1, the conventional Hartree-Fock-like 
approximation. The solutions to equation (2.15) are 

2r:0 '*=[-m~*(m~+4A~)1'2]/Ao. (2.16) 

y + x  W Y  x+y=x 

Figure 1. A diagrammatic representation of the truncated form of the Schwinger-Dyson 
equation. 

t Whence rp  = O(N'-p'2). 
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We note that these two solutions are also easily seen in direct calculation of the 
effective potential V using an auxiliary field x coupling to q:. This gives (to leading 
order in N-')?  

The potential V(q:) is determined by evaluating V(cp:, x )  for 

Nx 1 2 "i N av 
d X  2AO 2Ao 2x 

+- +?Pa+- -=()= -- 

(2.17) 

(2.18) 

which has two branches, with solutions x*(q:) .  The extrema of V(cp',) also satisfy 

a v/aQa = q a X  = 0. (2.19) 

Since x = 0 is not compatible with equation (2.18) we must choose qa = 0 (as observed 
earlier) whence equation (2.18) becomes 

x = m i + h o X - l .  (2.20) 

Since x plays the role of the (mass)2 of the fields at the extrema, it can be identified with 
(I$o)).-l. Equation (2.20) then becomes identical to equation (2 .15) .  We note that xt  
are of opposite sign. With the above interpretation negative x is 'unphysical' and 
should be excluded. We shall have more to say about this later. 

Finally, we stress that it is the summability of the W1 expansions of the solutions 
indicated above that concerns us. We expect the exact solutions for rZp to permit 
further N-' expansions different from the above as the boundary conditions change. 
We are not interested in these. 

3. Comparison to the exact solution 

Let us now construct the general solution (regular at qu = 0) to equation (2 .2) ,  to 
establish its relation to the N - l  expansion of the previous section. This is (observing the 
invariance of the equation under m i +  - m f ,  qa + f iq,) 

where 

(3 .2)  

and a, @ are arbitrary functions of m i ,  A,,, N .  Normalising Z to unity at qa = 0 gives Z 
in terms of one arbitrary function 

T ( m k  An, N )  = @/a (3.3) 

t Obtained directly by saddle-point methods,or diagrammatically via the prescsiption of Schnitzer (1974a,b), 
Coleman etal(1975), Kobayashi and Kugo (1975), Abbott er a6 (1976) and Rivers (1976). In D dimensions 
In(x/m:) is replaced by 5 [dDk/(2~)D] h ( k *  +x) .  
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or equivalently, Q. Thus, for example, 74 is given in terms of the arbitrary T~ by 

(3.4) 
A0 - (N 4- 2 ) ~ 4  4- m& - 1 = 0 
3 N  

and so on. 

order in N-')  from the non-linear equations (2.15), (2.13), etc. 
This is to be contrasted with the N-' expansion in which T~ is determined (order by 

Integrating over the angular variables we get 

(3.5) 
where C+ is [0, CO) and C- is (-00,0]. This gives 

where 

, *(N/2A)'")(- l)p/2Tp/2. (3.7) 

The V ( a ,  x)  are the usual parabolic cylinder functions. 
What interests us in this section is how the series ( T : ~ ) N  in N-' (defined after 

equation (2.14)), which were obtained by an iterative approximation to the Schwinger- 
Dyson equations alone, follow from the general solution (3.6). 

On examining the large N behaviour of f2", of equation (3.7) we observe that, as 
N+CO (fixed Ao) (Caianiello et a1 1965, Caianiello and Scarpetta 1974), 

-+ 
T2P - -2NO(A) { 1 + O(N-')} (3.8) = - A(Ao, p )  e 
T2P 

where 
O ( A ) = t l  dx(-+-). 1 1 

0 x 4  (3.9) 

That is, all the derivatives of T & , / T ~ ~  with respect to N-' are identically zero, and the 
ratio has (the non-unique) zero asymptotic series in N-'. (Similarly z+/z- has zero 
asymptotic series in N-'.) For this reason the analyticity of 2, and 2- individually in 
N-' is not of prime importance. 

As we have said q ( m &  Ao, N) = @/a is an arbitrary boundary condition as far as the 
Schwinger-Dyson equations are concerned (and the N-' expansion of the previous 
section was generated from them alone). Equivalently, we can consider the arbitrary T~ 

as defining q. 
Let us see how the asymptotic series in N-' of T~~ depends on the N behaviour of q. 

There are three possi'bilities, according to the large N behaviour of 

K ( m &  Ao, N) = q(mg ,  Ao, NI-' e-2No(A). (3.10) 

(i) If K has the form K = vO'k(m;, Ao, N) where k is not identically zero but has 
zero asymptotic series in N-' and qo is a constant (e.g. 77 independent of N), T~~ will 
have one or other of two asymptotic series in N - ' ,  as qo varies. 
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( a )  If q o = O  

where the suffix N on a bracket denotes the N-' expansion of its contents. 
( b )  If 770fO 

(3.12) 

Here we have an example of non-unique summability in that for all q # 0 we have 
the same asymptotic series. 

(ii) If K has a non-zero asymptotic series in N-' with finite coefficients (e.g. 
) equation (3.6) will give a continuous infinity of asymptotic series in N-'. q = a e  

(iii) If K-' has the form K-' = q0k-'(&,  Ao, N )  where k-' is not identically zero 
but has zero asymptotic series in N-' and qo is a constant, T~~ will again have one or 
another of two asymptotic series in N- ' :  

-2 NO( A ) 

(3.13) 

As in (i), the non-unque summability of K guarantees the non-unique summability of 
(T ip)N.  We note that, but for 7 = 0 and q-'= 0 these possibilities are exclusive. 

Since the asymptotic series ( T ; ~ ) ~  in N-' must be two of the above series (i.e. either 
(T;p)N or elements of the continuous infinity due to the boundary condition (ii)) it is 
sufficient to compare leading terms in N-' to determine which they are. The leading 
behaviour 

(3.14) 

immediately reproduces the solutions of equation (2.16) for rL0)* = 7 2  whence we can 
identify ( T ; p ) N  with ( T : ~ ) ~ .  

We have thus established a correspondence between the N-' expansions obtained 
by iteratively truncating the non-linear Schwinger-Dyson equations and the asymptotic 
series in N-' for the exact solutions with specified boundary conditions. We see that the 
former N-' expansion excludes possibility (ii) and we can now take this restriction as an 
implicit boundary condition. With this imposition T~ is no longer arbitrary and its 
asymptotic series will match the self-consistent approximations, although both solu- 
tions cannot be uniquely summable. The question arises as to whether this implicit 
boundary condition can be derived as a consequence of additional constraints on the 
solutions that are necessary for other reasons?. We shall now consider this possibility. 

From dimensional arguments we see that if z(Q) is the generating functional for the 
differently normalised unconnected Green functions 

Kp = moNf(h)Tp (3.15) 

t If this were not the case then not only would the N - '  expansion be non-uniquely summable but there would 
also exist physically relevant solutions of which it was not even the large N limit. The  mo+ 0 limit of this 
model provides an example of this. 
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(arbitrary f), by virtue of also satisfying the linear Schwinger-Dyson equation (.2.2), 2 
satisfies 

(3.16) 

We also know that if 2, is suitably renormalised (to 2, by suitable choice of f )  the 
Schwinger variational principle gives 

(3.17) 

(3.18) 

of which, from equation (3.16), only one is independent. 
In a more realistic theory these two equations (branching equations of the 'second 

kind' (Caianiello and Campolattaro 1962)) are related to the renormalisation group and 
Callan-Symanzik equations (Lowenstein 1974). The further demand that the N-' 
expansion of the exact solutions satisfies these conditions individually order by order: is 
effected by imposing them upon the general solution for 2, of equation (3.1). Since 2* 
of equation (3.2) individually satisfy equations (3.17) and (3.18) it follows that q = P/a 
is a function of N alone. It then follows that K of equation (3.10) cannot have a 
non-trivial asymptotic expansion in N-' as A varies. That is, boundary condition (ii) is 
excluded. Thus, although the N-' expansion of D 2 can be derived from the Schwinger- 
Dyson equations alone, it is compatible with the branching equations of the 'second 
kind' (equations (3.17) and (3.18)) which we henceforth assume to be valid. Further- 
more, from the small A behaviour of B ( A )  it then follows that boundary condition (iii) 
cannot be valid for arbitrarily small A.  

To summarise, we have shown that the implicit boundary conditions of the N-' 
expansion are not strong enough to determine the exact solutions for the connected 
Green functions. In consequence the N-' expansions cannot both be uniquely 
resummable to an exact solution. Moreover, in the absence of further constraints 
(which will be imposed later), which solutions are, or are not, uniquely resummable 
depends on the unspecified boundary conditions. This failure of summability has 
nothing to do with the Borel summability of (T;p)N but rather with the fact that the 
difference between the partial sums and the exact solutions (essentially proportional to 
K or K- ' )  cannot be strongly enough bounded$. 

We have yet to impose 'physical' conditions upon these solutions. On doing so we 
find that the importance of Borel summability reappears. We postpone a discussion of 
these constraints and of Borel summability (discussed in part in Hikami and BrCzin 
(1976)) until we have made a few comments about the A -perturbation series. 

4. The A behaviour of Green functions and physical solutions 

Having resolved the problem of the N-' summability of the solutions to the Schwinger- 
Dyson equations we shall briefly discuss the A behaviour of the exact solutions. 
.+ If the approximations used for more realistic theories are not compatible with the renormalisation group 
there are considerable difficulties (Caianiello et a1 1971). For realistic theories it seems that the N-' 
expansion is compatible with renormalisation group equations. 
j This was obscured in an earlier version of this work. 
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Assume that 7 is A-independent (i.e. equations (3.17) and (3.18) are satisfied). Near 
A = 0 (fixed N )  

- p - N / 2  N/4A 
T&/T&, = O(A e j. (4.1) 

If we examine the possible asymptotic series in A for 72" as 7 varies we find the expected 
two series. 

( a )  

with 

This is the usual A -perturbation series?', Borel summable, and uniquely summable to an 
exact solution without having to consider any further constraints. 

( b )  7 # 0, giving the nond-perturbative solution 

with 

not uniquely summable to an exact solution. This lack of uniqueness is inevitable from 
the non-unique summability of 7lp /7& We note that although ( 7 2 " ) ~  is not Borel 
summable when N is odd, for even N, it is a ratio of finite polynomials! 

We do note that the situation with A series is cleaner than with N-' series, since 
there is no doubt as to which A series is uniquely summable to an exact solution. In the 
absence of a further branching equation indicating variation with E = N-' we need an 
additional constraint to eliminate either boundary condition (iii) or (i) of the previous 
section and achieve the same end. As we have noted, to demand the same type of 
boundary condition valid for arbitrarily small A eliminates (iii) and guarantees that the 
N-' and A expansions of the exact solutions are closely related. That is, if ( 7 2 p ) N  = 
( T & ) N  it follows that ( ~ 2 " ) ~  = ( T & ) A $  and if ( 7 Z p ) N  = ( T & ) N  then (Q,,)A = ( 7 i P ) A .  

Having answered our initial questions on summability we wish to discuss briefly the 
possibility of finding physical reasons for the rejection of the non-unique solution w;. 
This might seem straightforward since CO; corresponds to r2 = x-l  being negative (i.e. a 

t We note that, assuming simple dominance of the heuristic path integrals by saddle-points, the perturbation 
series for massless O ( N )  invariant (d2)2 theory has (BrBzin et al 1977, Itzykson et a1 1977a,b, Parisi 1977) 

m 

= c a ( n , p ) A "  
n =n 

where 

a ( n ,  p )  = n !( - l)"n"a"D[ 1 + O(n- ' )]  

with cr independent of p ,  a dependent on p (independent of momentum) and D dependent on p .  
$ It is easily seen that ( T ; + , ) ~  and (T *  ) have close partial sums. For example, for N = p = 1 the partial sums 
with m terms differ only by terms ~ ~ " ' ) .  
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‘tachyon’). However, in order to eliminate this solution we must reject all of the exact 
solutions which it represents in the iarge N limit and, at least for some values of A and 7, 
these have positive r2 in defiance of their asymptotic representative. In fact, if we 
consider rz in more detail we find the following. If 171 > 1 I’? is negative. If 171 < 1 r2 is 
positive for large A and negative for small A.  If 7 = 0 Tz is everywhere positive. Curve 
A of each of figures 2-5 gives r2 for varying values of 7 whilst curve B gives the leading 
order expansion in 1/N for the simple case N = 1. Thus if we are to eliminate the 
non-unique solutions a more general form of this constraint must be found. 

--I 
2 00 L 00 

h 

Figure 2. Curve A, the exact Green function P T I ~ T ~ ( ~ )  for r) = 0. Curve R ,  the leading order 
approximation m i ( r ;  I,.,. 

5. ‘Physical’ constraints 

In this section we shall impose constraints appropriate to a regularised Euclidean field 
theory. The most relevant is that Z[q] should satisfy positivity conditions (Symanzik 
1964, Iliopoulos et a1 1975). 

A first consequence is that we must have 

% p ( T )  ’ 0 VP. (5,1) 
For p = 1 this corresponds to eliminating tachyons. For mi  > 0 it follows that, for (5.1) 
to be satisfied for large enough N, we must have 7 = 0. That is, we have a unique 
solution. Thus, without any calculation we deduce that ( T ; ~ ) ~  is uniquely summable to 
a physical solution. 

For m: < 0,condition (5.1) is not as restrictive, only requiring that 171 s 1. However, 
positivity also requires that 
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Figure 4. Curve A, the exact Gre 
approximation W I ~ ( T ;  l w  

B, the leading order 

(where, without lass of generality in its application, we have taken N = 1 for simplicity). 
Taking i, j = 1, 2 gives 

Z[iq] + Z [  - iq] s 2Z[O] .  (5.3) 
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This further restricts r ]  to the range - 19 r ]  s 0. We are unable to restrict the value of r] 

further by taking more than two ci in (5.2). 
Finally, we should impose convexity on W[q]. That is, we must have 

d 2 W  1 d 2 Z  1 d Z  
dq2 Z d q 2  Z dq 
-=--- (--) ao. 

This again gives r2 2 0 (and is always compatible with q = 0) and by its non-linearity 
would be expected to be very restrictive. Unfortunately we are unable to prove 
analytically that r ]  = 0 is the only possibility. Assuming this, we shall examine the Borel 
summability of the N-’ expansions for Z (and compare them to the A expansions) in the 
next section. 

6. Borel summability 

it is helpful to consider the Borel summability of Z*(qi = 0) of equations (3.2) and (3.5). 
Writing Z* from (3.5) as 
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2 (on substitution of x = N e ' )  it is straightforward to expand Z" about the leading 
saddle-points at &(FL ( t* )  = 0) where 

The equation F: ( I )  = 0 has further (complex) solutions 

*1+(1+-4A)' i2 
2A 

+ inrr integer n. &' =-___I_ 

The nearest of these (n = f 1) determine, via Darboux' theorem (Dingle 1973) the 
coefficients A$ in the expansion 

We have kept the notation of Hikami and BrCzin (1976), in which A i  were 
calculated. In a similar manner it is straightforward to evaluate A i .  The reader is 
referred to Wikaini and BrCzin (1976) and Dingle (1973) for details and method of 
calculation. It is sufficient for our purposes to quote the combined result 

where A' are irrelevant scale factors, and 

p -- (Z2+ 7r2/4)l/2 

(6.7) 

(6.8) 

8* = cos-1(+ Z / p ) .  (6.10) 

That is, for all A, the series C A ; N K  are Borel summable. The Borel transforms 
B*(b) have singularities at (arg b*l= @*. 

As we have noted, Z -  is not Borel summable (in general) as a power series in  A,  the 
transform having singularities on the positive real axis. (Z' is Borel summable in A, 
with singularities on the negative real axis). 

This behaviour in A is reflected in the behaviour of 0,  as A + 0. From (6.10) and 
(6.9) we see that, as h -+ 0, 

9+ = 7r( I - 2 4  A = O .  (6.11) 

(That is, the singularities of B f ( b )  pinch the negative b axis.) 
On the other hand, €or small A, 

- 
8- = T -  @ + = ~ T J A  (6.12) 

showing that, in this case, the singularities of B - ( b )  pinch the positive b axis, implying 
difficulty for the A summability. 

To summarise, we have seen that (Z"),  is Borel summable (once the leading 
saddle-point exponential is factored out). This suggests that ( T & ) ~  is the ratio of two 
Borel summable series, which is hardly surprising since T& is a unique solution for 
m: > 0. For mg < 0 the situation is very different, since ( Z - ) N  is still Borel summable 
(after factoring out the saddle-point term) implying that ( T ; , , ) ~  is the ratio of Borel 
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summable series. This is in contrast to the A expansions for +zp7 which (in general) are 
not Bore1 summable. Thus, rearranging the perturbation series as the N-' expansion 
does convert a meaningless expansion into a more sensible one?. 

The conclusions of this and preceding sections are summarised in tables 1 and 2. 

7. The O ( N )  lattice model 

We shall devote this final section to comments about the relevance of our conclusions 
for the single-mode (or zero-dimensional) model to a more realistic theory. As we have 
said before, we shall not be able to take infinite renormalisation into account. We 
therefore choose to work with an O ( N )  theory on a finite lattice, with fixed lattice 
parameter a. Caianiello and co-authors (Caianiello et a1 1978) have stressed the 
relevance of the single-mode approximation for lattice calculations and their ideas have 
been extended by other authors mort: recently (Bender et al 1979). 

Let Z[ja]  be the generating functional for the O ( N )  invariant theory (2.1) on the 
lattice. The Schwinger-Dyson equation for Z is 

If we write Z[j,] as 

where 

it follows from (7.1) that Z,[j,] satisfies 

(7.4) 

This is essentially the same equation as the equation (2.2) for Zo(q,, m& ho, N )  (or 
equivalently, equation ( 2 , 6 )  €or Wo(q,, m;, AO) of (2 .5) ) .  All OUT conclusions about the 
single-mode approximation can thus be transferred to the Schwinger-Dyson equation 
(7.4). Rather than reiterate them we want to go further and discuss the, relationship of 
Z1 to Zo and to Z, :he generating functional for the full theory. 

The exact relationship is most easily seen in terms of the generating functionals for 
connected Green functions. If 

W l ( i O ,  m:9 Ao, N ,  = z l ( j a ,  m g >  A07 (7.5) 

Wi[ja,  m i ,  Ao, N I =  S(0) dx Wo(j,(x)8(0)-l9 miS(O)-', hoS(0)- ')  (7.6) 

it follows that \VI is expressible in terms of WO (equation (2 .5))  by 

1 
where S(0) is shorthand for a-d (for a d-dimensional lattice). 

Thus, knowing WO enables US to determine Wl directly. Inserting this in (7.2) we 
can develop a diagrammatic expansion (Bender et a1 1979, Kovesi-Domoltos 1976) for 

f In these respects the h expansion resembles the A expansion. 
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W = In Z, with 'propagators' S a b K ( x  - y )  and vertices 

a" 
a q a ,  * * . d q a ,  

A (n) ala?  ... a ,  = 6(0) ' - " -  w ( q a ,  m;s(o)-',  A~s(o) -~) I  . (7.7) 

That is, A'"'  are directly expressible in terms of the I', of equation (2.7) (and hence 
A @ )  = O(N'--p/' )). It is thus straightforward to develop the N-' expansion for W but we 
shall not pursue this here?, 

' q<,=o 

Rather, we observe that, since 

W ~ ( ~ ~ S ( O ) - - ~ ,  mis(~)-~ ,  A ~ S ( O ) - I )  = W , ( ~ , ~ ( O ) - ~ / ~ A ; ~ / ~ ,  ~ ; s ( o ) - ~ / ~ A ; ~ / ~ :  1) (7 .8)  
we have 

A ( f l )  = ()(A,"'*). 

Since A ( 2 p t ' )  = 0 the diagrammatic expansion 
appropriate for strong coupling. 

This enables us to relate the 'physical' 

is an expansion in 

constraints of 0 5 

(7.9) 
I / z  

A. , and therefore 

for the fake zero- 
dimensional theory to genuine physical-constraints for the full (lattice) theory. 

Suppose 

= 6,,6(0)-'r2(mis(o).-', A~s(o)- ' ,  N )  (7.10) 

where T2 is defined by (2.7). 
The properties of r2 were discussed in great detail in previous sections, and ,y = S;' 

was interpreted as the (mass)' of the scalar field of the zero-dimensional theory. whose 
positivity was necessary for this toy theory to be 'physical'. We shall see that r;' has 
meaning in the full theory. 

As an extreme example suppose, for the sake of argument, that we were to adopt the 
renormalisation prescription of Kovesi-Domokos (1976) in which all K loops vanish. 
The two-point function then has the form 

(7.11) 

that is, 2 -- ri l  (related trivially to ,y via (7.10)) is the physical scalar mass of the full 
theory if this renormalisation scheme were fully sensible. (Similar comparisons could 
be made between rZp, p = 1 , 2 , .  . . , and physical quantities of the full theory.) 

In fact, we believe that renormalisation is more complicated (Bender et al 1979) and 
this simple picture must be rejected. However, X stili plays a role for large ho (and fixed 
a )  since the position of the pole in the two-point function is now at p 2  = M 2 ,  where$ 

(7.12) M2 3;- j+- 2 '(1 +O(A;"2)). 

t This expansion in powers of the very singular K and powers of A.-''* is not immediately reconcilable with 
conventional N - '  expansions which use K - '  and powers of A (Schnitzer 1974a,b, Coleman ef a1 1975, 
Kobayashi and Kugo 1975, Abbott et a1 1976, Rivers 1976). However, the leading behaviour is seen 
immediately to have common properties whichever expansion is chosen. 
<:To faci!itate comparison between Render et a1 (1979) and Kdvesi-Domokos (1976) we note that 
i',(m2 tp ' ,  A ) - '  = f , ( m z , A ) - 1 + ~ 2 + 0 ( A - " 2 ) .  
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Thus, for large ,lo, 2 (which is O(AA’2)) is still the physical (mass)’ of the scalar field. 
Thus positive r2 still implies the absence of tachyons (for large ,lo). 

8. Conclusions 

Our results for the single-mode (zero-dimension) approximation are displayed in tables 
1 and 2. The significant feature is the relationship of the non-linear iterative N-’ 
expansions to the rest of the diagram. The left-hand column displays the general 
solution, the centre column the N-’ asymptotic series, and the right-hand column the 
A-asyi,iptotic series. We progress from top to bottom as more constraints are applied. 
Of particular note is the observation for mi<O that, even without determining 
necessary and sufficient conditions for mi<O, the non-Bore1 summability of the A 
expansion is not reflected in the N - ’  expansion. 

In the final section we have argued that the zero-dimensional model results can be 
extended in part to an B(N)-invariant scalar lattice theory. In particular, the ‘physical’ 
constraints imposed upon the zero-dimensional model are seen to be related to physical 
constraints on the full lattice theory. 

In summary, we now understand the role of non-linear approximation schemes (e.g. 
Hartree-Fock-like approximations and their iterative extensions) in theories with no 
infinite renormalisation. We hope to be able to treat infinite renormalisation else- 
where, using the techniques of Bender et ak (1979) for coming off the lattice. 

Nofe added in proof. In a recent paper entitled Path integral Analysis of the Spontaneous Breakdown of 
Symmetry in a Sfatic Ulfr,alocal Field Theory by S De Filippo and G Scarpetta (University of Salerno preprint) 
the authors considered some consequences of taking complex integration paths (in the x space of equation 
(3.2) for N = 1) for m i  < 0. While preserving the reality of W and forbidding ‘tachyons’ it is possible to have 
symmetry breaking. Whether this is sufficient is unclear to us. We thank the authors for communicatingtheir 
results prior to publication. 
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